Uygulama modernizasyonunu kolaylaştırmak için bile kullanılabilir ”
Esas olarak başka bir yerde tasarlanmış kodu özgürce kullanmanın yasal sonuçları, geliştiricilerin bu alanda daha üretken olmalarına yardımcı olmak yerine, gerçekten kod üretmenin önünde potansiyel bir engel teşkil ediyor Angove, sonuçta geliştiriciler ve diğer BT profesyonelleri için “kolayca kopyalanamayacak veya öğretilemeyecek şeyler” konusunda bol miktarda fırsat olacağını öngörüyor Saptharishi, geliştiricilerin tüm uygulamaları bir gecede yazmak için yapay zekayı kullanmayacağını söylüyor: “Yapay zeka, geliştiricilerin işlerini daha hızlı yapmasına ve daha az hata yapmasına yardımcı olacak ve zamanla yapay zeka, uygulama geliştirmede daha büyük bir rol oynayacak
Ancak yapay zekanın geliştiricilerin başarılı olmasına yardımcı olup olmayacağı ya da onların rollerinin çoğunun yerini alıp almayacağı konusunda karışık tepkiler var ”
Geliştirici rollerinin ne tür bir gerileme yaşayacağı tartışmalı olsa da, Launch’ın Welch’i, geliştiricilerin giderek daha zorlu işlere yönelik sonuçları çok daha hızlı sunma becerileri üzerinde birçok olumlu etki öngörüyor:
- Bir öneri motoru olarak: Önemli bir fayda, “Yapay zeka önerilerini kod geliştirme sürecine entegre etmek veya kod girişi sırasında yapay zeka önerileri sağlamak” olacak, diyor
Teknoloji geliştikçe, “İnsan programlama becerilerinin giderek daha az gerekli hale geleceğini ve eninde sonunda bunların yerini komut istemlerini kullanan mühendislerin alacağını düşünüyorum” öngörüsünde bulunuyor Duncan AngoveBlue Yonder’ın CEO’su “Kullanıcı hikayesini bir özelliğe veya ürüne dönüştürme hızı arttıkça çevik metodolojilerin de uyum sağlaması gerekecek yeni diller “Bu modeller, birçok lisans türüyle açık kaynak kodu üzerinde eğitiliyor ve ürettikleri yazılımın açık kaynağa çok benzer olduğu düşünülürse ne olacağını zaman gösterecek Şu anda ücretsiz olan uygulamalarla karşılaştırıldığında araçları (LLM’lerin kendilerini) oluşturmaya yardımcı olacak beceriler geliştirin ”
-
Eski kütüphaneleri güncellemek için: Welch, “Yapay zeka, büyük bir kod tabanını Cobol gibi eski bir dilden Java veya C# gibi daha modern bir dile taşımayı çok daha kolay hale getirebilir” diyor Welch KPMG raporunun yazarları, yapay zekanın artan kullanımının “geliştiricileri çerçeveler, platformlar, ürünler ve kayıt sistemleri genelinde daha uygun hale getireceğini” söylüyor ”Ancak üretkenlikteki artış, yapay zeka ve otomasyonun işler üzerindeki gelecekteki etkisi söz konusu olduğunda yalnızca başlangıç noktasıdır
Artan üretkenlik yalnızca başlangıç noktasıdır
Temel düzeyde bu, projeler üzerinde daha büyük hacimli işleri tamamlama yeteneği anlamına gelir Şu anda asıl tartışma “ne kadar” Bir araştırmaya göre “Birçok geliştirici için üretken yapay zeka şimdiye kadar bilecekleri en değerli kodlama ortağı olacak ”
Başka bir yerde tasarlanmış kodun serbestçe kullanılmasının hukuki sonuçları, etkili kod oluşturmanın önünde potansiyel bir engel teşkil etmektedir
Elbette bu düşüşün ölçeğini de perspektife koymak önemli ”
“İş analistleri ve ürün yöneticileri yeni hızlı mühendisler olacak”Odaktaki bu değişim, daha az gerçek programlama rolüne yol açacak ve daha fazla iş odaklı geliştiriciler, belirli uygulamalar için ihtiyaç duydukları yetenekleri bir araya getirmeye odaklanacak ”
Ancak açık olalım: Yapay zeka ve otomasyon çağında yazılım geliştirme rollerinin azaltılması halihazırda devam ediyor
Yazılım geliştirici mesleği, yapay zekanın (AI) etkisiyle bir dönüşüm yaşıyor ” Danışmanlığı Başlatbir bölümü Gezegen Grubu
Sektör gözlemcilerinin mevcut kararı: Şu ana kadar çok iyi Birçok açıdan, yazılımın ne yapması gerektiğine dair kullanıcı hikayeleri biçimindeki açıklamalar yeni kod haline gelebilir
Bay Saptharishi, “Bir yandan soru sormayı ve sonuçları nasıl test edeceğinizi bilmenin yanı sıra, istenen cevaba ulaşmak için yapay zekaya doğru bilgileri sağlamalısınız” diye açıklıyor “Üretken yapay zeka, onlara normalde baş edebileceklerinden daha geniş bir proje yelpazesinde çalışmak için ihtiyaç duydukları iskeleyi ve rehberliği sağlayacak KPMG yazarları, “Üretici yapay zekayla ilgili fikri mülkiyet sorunları henüz çözülmedi” diye vurguluyor
“Büyük dil modellerinin neyi yapamayacağını düşünün ve yapın BT profesyonellerinin yaratıcılığı, problem çözme becerileri, kavramları oluşturma ve başkalarına açıklama yeteneği, başarılarında her zaman önemli bir rol oynayacaktır Kısa vadede kod kalitesini kontrol etmek için programcılara hâlâ ihtiyacımız olacak, ancak zamanla bu rol de kaybolacak “Yakın zamanda yapılan bir proje için GitHub Copilot’u VS Code’a dahil ederek, programcıların küçük bir fonksiyon yazmak gibi on dakikalık görevleri, fonksiyonu açıklayan bir yorum yazmak için harcadıkları 30 saniyeye indirdiklerini gördük “Fonksiyonların gerçek kodu şu şekildedir: Copilot tarafından yazılmıştır ve çoğu zaman bu işlevler, üzerinde değişiklik yapılmasına gerek kalmadan kullanıma hazırdır “GitHub Copilot buna iyi bir örnektir ve geliştiricilerin yazdıklarına göre öneriler ve öneriler sunar Yeni düşüncenin değeri daha da değerli hale geliyor Teknoloji geliştikçe, “İnsan programlama becerilerinin giderek daha az gerekli hale geleceğini ve en sonunda yerini hızlı mühendislerin alacağını düşünüyorum” diye tahmin ediyor Yapay zeka, kullanıma özel işlevler veya bölümler hakkında ayrıntılı sorular sormak için kod OpenAI’nin GPT-4’ü ve Microsoft’un Copilot’u gibi üretken yapay zeka modellerinin ve yardımcılarının, herhangi bir amaç için herhangi bir dilde neredeyse anında kod üretme kapasitesine sahip olduğu artık açıktır
“Şimdiye kadar tanıyacakları en değerli kodlama ortağı”Direktörü ve teknoloji lideri Joe Welch şunları söyledi: “Üretken yapay zeka, geliştiricilerin rollerine yaklaşım biçimini kökten değiştiriyor ve üretkenlik devriminden başka bir şeye öncülük etmiyor ”
Üretken yapay zeka araçları, geliştiricilerin zorlu çalışmalarının çoğunun yerini alsa da, bu teknolojilerin yükselişi aynı zamanda onların organizasyon içindeki rollerini yükseltme fırsatlarının da önünü açıyor “Geliştiriciler bu özetleri okuduktan sonra doğrudan sohbet robotuyla etkileşime girebilir
Angove ise gerçek programlama rollerinde bir düşüş ve daha fazla iş odaklı geliştiricilerin belirli uygulamalar için ihtiyaç duydukları yetenekleri bir araya getirmesini öngörüyor Bu, yeni bir kod tabanını anlamak için gereken süreyi önemli ölçüde azaltır
Kaynak : “ZDNet Bunun ne kadar oyunun kurallarını değiştirdiğini anlamak zor
Bu teknolojik kapasite, yazılım geliştiricilerin faaliyetlerinde azalmayla karşılaşacağı anlamına geliyor
Şu anda sektör, üretken yapay zeka platformlarının yazılım geliştirme mesleğine getirdiği güç ve üretkenlikten heyecan duyuyor
“İş analistleri ve ürün yöneticileri, iş ihtiyaçlarını ihtiyaç duyduğumuz kodu üreten istemlere dönüştüren yeni hızlı mühendisler olacak ” rapor KMPG danışmanından com”
genel-15